2,137 research outputs found

    Predictors of well-being in cancer survivors

    Get PDF
    Nearly 65% of adults diagnosed with cancer will live, at least, five years after the diagnostic. If the treatment is lengthy and disruptive, the persons can experience difficulties in returning to normal daily life. Research shows that cancer survivors suffer from more psychological distress than those who have never experienced cancer (5.6% versus 3.0%), reason why psychoeducational programs are necessary to help people return to everyday life. The objective of the present study is to identify psychosocial predictors of well being in people that survive cancer, are in stable condition, and a diagnosis of longer than three years

    Superconducting Magnet with the Reduced Barrel Yoke for the Hadron Future Circular Collider

    Full text link
    The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T is proposed for a FCC-hh experimental setup. The coil of 24.518 m long has seven 3.5 m long modules included into one cryostat. The steel yoke with a mass of 21 kt consists of two barrel layers of 0.5 m radial thickness, and 0.7 m thick nose disk, four 0.6 m thick end-cap disks, and three 0.8 m thick muon toroid disks each side. The outer diameter of the yoke is 17.7 m; the length without the forward muon toroids is 33 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity of \pm 3.5. The conventional forward muon spectrometer provides the measuring of the muon momenta in the pseudorapidity region from \pm 2.7 to \pm 4.6. The magnet modeled with Cobham's program TOSCA. The total Ampere-turns in the superconducting solenoid coil are 127.25 MA-turns. The stored energy is 43.3 GJ. The axial force onto each end-cap is 480 MN. The stray field at the radius of 50 m off the coil axis is 14.1 mT and 5.4 mT at the radius of 100 m. All other parameters presented and discussed.Comment: 3 pages, 6 figures, presented on November 4, 2015 at the 2015 IEEE Nuclear Science Symposium, Town \& Country Hotel, San Diego, CA (31 October - 7 November 2015

    Baby MIND: A magnetised spectrometer for the WAGASCI experiment

    Get PDF
    The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). Title + 4 pages, LaTeX, 6 figure

    Baby MIND Experiment Construction Status

    Get PDF
    Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at CERN, and is planned to be operational in Japan in October 2017.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). 4 pages, LaTeX, 7 figure

    Baby MIND: A magnetized segmented neutrino detector for the WAGASCI experiment

    Get PDF
    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280~m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295~km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.Comment: In new version: modified both plots of Fig.1 and added one sentence in the introduction part explaining Baby MIND role in WAGASCI experiment, added information for the affiliation

    Os babuínos da Guiné (Papio papio) na Guiné-Bissau: Uma revisão bibliográfica para a conservação da espécie

    Get PDF
    O babuíno da Guiné (Papio papio), que é simultaneamente a espécie de babuínos mais ameaçada e a menos investigada, foi reportado como estando a diminuir na Guiné-Bissau devido à intensa pressão exercida pelas atividades antropogénicas. Estes resultados motivaram investigação dirigida à biologia, ecologia evolução, parasitologia e conservação das populações da espécie na Guiné Bissau, para melhorar o conhecimento e a conservação dos babuínos da Guiné. A população da Guiné-Bissau destaca-se de outras por uma composição genética diferenciada. As populações do sul do país, em contacto frequente com atividades antropogénicas, demonstram modificações comportamentais e poderão estar ameaçadas por interações negativas com as comunidades humanas locais. A conservação dos babuínos da Guiné deverá ser ativamente gerida para evitar o desaparecimento silencioso e não notado de populações.info:eu-repo/semantics/publishedVersio

    Recent EUROfusion Achievements in Support of Computationally Demanding Multiscale Fusion Physics Simulations and Integrated Modeling

    Get PDF
    Integrated modeling (IM) of present experiments and future tokamak reactors requires the provision of computational resources and numerical tools capable of simulating multiscale spatial phenomena as well as fast transient events and relatively slow plasma evolution within a reasonably short computational time. Recent progress in the implementation of the new computational resources for fusion applications in Europe based on modern supercomputer technologies (supercomputer MARCONI-FUSION), in the optimization and speedup of the EU fusion-related first-principle codes, and in the development of a basis for physics codes/modules integration into a centrally maintained suite of IM tools achieved within the EUROfusion Consortium is presented. Physics phenomena that can now be reasonably modelled in various areas (core turbulence and magnetic reconnection, edge and scrape-off layer physics, radio-frequency heating and current drive, magnetohydrodynamic model, reflectometry simulations) following successful code optimizations and parallelization are briefly described. Development activities in support to IM are summarized. They include support to (1) the local deployment of the IM infrastructure and access to experimental data at various host sites, (2) the management of releases for sophisticated IM workflows involving a large number of components, and (3) the performance optimization of complex IM workflows.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014 to 2018 under grant agreement 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission or ITER.Peer ReviewedPostprint (published version
    corecore